Intermolecular Energy and Virial Function (Van der Waals)
In this section, the virial and energy equation of Van der Waals interaction for different potential function are discussed in details.
VDW
This option calculates potential energy without any truncation.
Potential Calculation
Interactions between atoms can be modeled with an n-6 potential, a Mie potential in which the attractive exponent is fixed. The Mie potential can be viewed as a generalized version of the 12-6 Lennard-Jones potential,
\[E_{\texttt{VDW}}(r_{ij}) = C_{n_{ij}} \epsilon_{ij} \bigg[\bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^{n_{ij}} - \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^6\bigg]\]where \(r_{ij}\), \(\epsilon_{ij}\), and \(\sigma_{ij}\) are, respectively, the separation, minimum potential, and collision diameter for the pair of interaction sites \(i\) and \(j\). The constant \(C_n\) is a normalization factor such that the minimum of the potential remains at \(-\epsilon_{ij}\) for all \(n_{ij}\). In the 12-6 potential, \(C_n\) reduces to the familiar value of 4.
\[C_{n_{ij}} = \bigg(\frac{n_{ij}}{n_{ij} - 6} \bigg)\bigg(\frac{n_{ij}}{6} \bigg)^{6/(n_{ij} - 6)}\]Virial Calculation
Virial is basically the negative derivative of energy with respect to distance, multiplied by distance.
\[W_{\texttt{VDW}}(r_{ij}) = -\frac{dE_{\texttt{VDW}}(r_{ij})}{r_{ij}}\times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} = F_{\texttt{VDW}}(r_{ij}) \times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}}\]Using n-6 LJ potential defined above:
\[F_{\texttt{VDW}}(r_{ij}) = 6C_{n_{ij}} \epsilon_{ij} \bigg[\frac{n_{ij}}{6} \times \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^{n_{ij}} - \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^6\bigg]\times \frac{1}{{r_{ij}}}\]
Note
This option only evaluates the energy up to specified Rcut
distance. Tail correction to energy and pressure can be specified to account for infinite cutoff distance.
EXP6
This option calculates potential energy without any truncation.
Potential Calculation
Interactions between atoms can be modeled with an exp-6 (Buckingham) potential,
\[\begin{split}E_{\texttt{VDW}}(r_{ij}) = \begin{cases} \frac{\alpha_{ij}\epsilon_{ij}}{\alpha_{ij}-6} \bigg[\frac{6}{\alpha_{ij}} \exp\bigg(\alpha_{ij} \bigg[1-\frac{r_{ij}}{R_{min,ij}} \bigg]\bigg) - {\bigg(\frac{R_{min,ij}}{r_{ij}}\bigg)}^6 \bigg] & r_{ij} \geq R_{max,ij} \\ \infty & r_{ij} < R_{max,ij} \end{cases}\end{split}\]where \(r_{ij}\), \(\epsilon_{ij}\), and \(R_{min,ij}\) are, respectively, the separation, minimum potential, and minimum potential distance for the pair of interaction sites \(i\) and \(j\). The constant \(\alpha_{ij}\) is an exponential-6 parameter. The cutoff distance \(R_{max,ij}\) is the smallest positive value for which \(\frac{dE_{\texttt{VDW}}(r_{ij})}{dr_{ij}}=0\).
Note
In order to use
Mie
orExotice
potential file format forBuckingham
potential, instead of defining \(R_{min}\), we define \(\sigma\) (collision diameter or the distance, where potential is zero) and GOMC will calculate the \(R_{min}\) and \(R_{max}\) usingBuckingham
potential equation.Virial Calculation
Virial is basically the negative derivative of energy with respect to distance, multiplied by distance.
\[W_{\texttt{VDW}}(r_{ij}) = -\frac{dE_{\texttt{VDW}}(r_{ij})}{r_{ij}}\times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} = F_{\texttt{VDW}}(r_{ij}) \times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}}\]Using exp-6 potential defined above:
\[\begin{split}F_{\texttt{VDW}}(r_{ij}) = \begin{cases} \frac{6 \alpha_{ij}\epsilon_{ij}}{r_{ij}\big(\alpha_{ij}-6\big)} \bigg[\frac{r_{ij}}{R{min,ij}} \exp\bigg(\alpha_{ij} \bigg[1-\frac{r_{ij}}{R_{min,ij}} \bigg]\bigg) - {\bigg(\frac{R_{min,ij}}{r_{ij}}\bigg)}^6 \bigg] & r_{ij} \geq R_{max,ij} \\ \infty & r_{ij} < R_{max,ij} \end{cases}\end{split}\]
Note
This option only evaluates the energy up to specified Rcut
distance. Tail correction to energy and pressure can be specified to account for infinite cutoff distance.

Graph of Van der Waals interaction for comparison of VDW
and EXP6
potentials.
SHIFT
This option forces the potential energy to be zero at Rcut
distance.
Potential Calculation
Interactions between atoms can be modeled with an n-6 potential,
\[E_{\texttt{VDW}}(r_{ij}) = C_{n_{ij}} \epsilon_{ij} \bigg[\bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^{n_{ij}} - \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^6\bigg] - C_{n_{ij}} \epsilon_{ij} \bigg[\bigg(\frac{\sigma_{ij}}{r_{cut}}\bigg)^{n_{ij}} - \bigg(\frac{\sigma_{ij}}{r_{cut}}\bigg)^6\bigg]\]where \(r_{ij}\), \(\epsilon_{ij}\), and \(\sigma_{ij}\) are, respectively, the separation, minimum potential, and collision diameter for the pair of interaction sites \(i\) and \(j\). The constant \(C_n\) is a normalization factor according to Eq. 3, such that the minimum of the potential remains at \(-\epsilon_{ij}\) for all \(n_{ij}\). In the 12-6 potential, \(C_n\) reduces to the familiar value of 4.
Virial Calculation
Virial is basically the negative derivative of energy with respect to distance, multiplied by distance.
\[W_{\texttt{VDW}}(r_{ij}) = -\frac{dE_{\texttt{VDW}}(r_{ij})}{r_{ij}}\times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} = F_{\texttt{VDW}}(r_{ij}) \times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}}\]Using
SHIFT
potential function defined above:\[F_{\texttt{VDW}}(r_{ij}) = 6C_{n_{ij}} \epsilon_{ij} \bigg[\frac{n_{ij}}{6} \times \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^{n_{ij}} - \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^6\bigg]\times \frac{1}{{r_{ij}}}\]Graph of Van der Waals potential with and without the application of the
SHIFT
function. With theSHIFT
function active, the potential by force was reduced to 0.0 at theRcut
distance. With theSHIFT
function, there is a discontinuity where the potential is truncated.
SWITCH
This option in CHARMM
or EXOTIC
force field smoothly forces the potential energy to be zero at Rcut distance and starts modifying the potential at Rswitch distance.
Potential Calculation
Interactions between atoms can be modeled with an n-6 potential,
\[E_{\texttt{VDW}}(r_{ij}) = C_{n_{ij}} \epsilon_{ij} \bigg[\bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^{n_{ij}} - \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^6\bigg]\times \varphi_E(r_{ij})\]where \(r_{ij}\), \(\epsilon_{ij}\), and \(\sigma_{ij}\) are, respectively, the separation, minimum potential, and collision diameter for the pair of interaction sites \(i\) and \(j\). The constant \(C_n\) is a normalization factor according to Eq. 3, such that the minimum of the potential remains at \(-\epsilon_{ij}\) for all \(n_{ij}\). In the 12-6 potential, \(C_n\) reduces to the familiar value of 4.
The factor \(\varphi_E\) is defined as:
\[\begin{split}\varphi_E(r_{ij}) = \begin{cases} 1 & r_{ij} \leq r_{switch} \\ \frac{\big({r_{cut}}^2 - {r_{ij}}^2 \big)^2 \times \big({r_{cut}}^2 - 3{r_{switch}}^2 + 2{r_{ij}}^2 \big)}{\big({r_{cut}}^2 - {r_{switch}}^2 \big)^3} & r_{switch} < r_{ij} < r_{cut} \\ 0 & r_{ij} \geq r_{cut} \end{cases}\end{split}\]Virial Calculation
Virial is basically the negative derivative of energy with respect to distance, multiplied by distance.
\[W_{\texttt{VDW}}(r_{ij}) = -\frac{dE_{\texttt{VDW}}(r_{ij})}{r_{ij}}\times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} = F_{\texttt{VDW}}(r_{ij}) \times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}}\]Using SWITCH potential function defined above:
\[ \begin{align}\begin{aligned}F_{\texttt{VDW}}(r_{ij}) = \Bigg[6 C_{n_{ij}} \epsilon_{ij} \bigg[\frac{n_{ij}}{6} \times \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^{n_{ij}} - \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^6\bigg]\times \frac{\varphi_E(r_{ij})}{{r_{ij}}} -\\C_{n_{ij}} \epsilon_{ij} \bigg[\bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^{n_{ij}} - \bigg(\frac{\sigma_{ij}}{r_{ij}}\bigg)^6\bigg] \times \varphi_F(r_{ij}) \Bigg]\end{aligned}\end{align} \]The factor \(\varphi_F\) is defined as:
\[\begin{split}\varphi_F(r_{ij}) = \begin{cases} 0 & r_{ij} \leq r_{switch} \\ \frac{12r_{ij}\big({r_{cut}}^2 - {r_{ij}}^2 \big) \times \big({r_{switch}}^2 - {r_{ij}}^2 \big)}{\big({r_{cut}}^2 - {r_{switch}}^2 \big)^3} & r_{switch} < r_{ij} < r_{cut} \\ 0 & r_{ij} \geq r_{cut} \end{cases}\end{split}\]Graph of Van der Waals potential with and without the application of the
SWITCH
function. With theSWITCH
function active, the potential is smoothly reduced to 0.0 at theRcut
distance.
SWITCH (MARTINI)
This option in MARTINI
force field smoothly forces the potential energy to be zero at Rcut distance and starts modifying the potential at Rswitch
distance.
Potential Calculation
Potential Calculation: Interactions between atoms can be modeled with an n-6 potential. In standard MARTINI, \(n\) is equal to 12,
\[E_{\texttt{VDW}}(r_{ij}) = C_{n_{ij}}\epsilon_{ij} \Bigg[ {\sigma_{ij}}^{n} \bigg(\frac{1}{{r_{ij}}^{n}} + \varphi_{E, n} (r_{ij}) \bigg) - {\sigma_{ij}}^{6} \bigg(\frac{1}{{r_{ij}}^{6}} + \varphi_{E, 6} (r_{ij}) \bigg) \Bigg]\]where \(r_{ij}\), \(\epsilon_{ij}\), and \(\sigma_{ij}\) are, respectively, the separation, minimum potential, and collision diameter for the pair of interaction sites \(i\) and \(j\). The constant \(C_n\) is a normalization factor according to Eq. 3, such that the minimum of the potential remains at \(-\epsilon_{ij}\) for all \(n_{ij}\). In the 12-6 potential, \(C_n\) reduces to the familiar value of 4.
The factor \(\varphi_{E, \alpha}\) and constants are defined as:
\[\begin{split}\varphi_{E, \alpha}(r_{ij}) = \begin{cases} -C_{\alpha} & r_{ij} \leq r_{switch} \\ -\frac{A_{\alpha}}{3} (r_{ij} - r_{switch})^3 -\frac{B_{\alpha}}{4} (r_{ij} - r_{switch})^4 - C_{\alpha} & r_{switch} < r_{ij} < r_{cut} \\ 0 & r_{ij} \geq r_{cut} \end{cases}\end{split}\]\[A_{\alpha} = \alpha \frac{(\alpha + 1) r_{switch} - (\alpha +4) r_{cut}} {{r_{cut}}^{(\alpha + 2)} {(r_{cut} - r_{switch})}^2}\]\[B_{\alpha} = \alpha \frac{(\alpha + 1) r_{switch} - (\alpha +3) r_{cut}} {{r_{cut}}^{(\alpha + 2)} {(r_{cut} - r_{switch})}^3}\]\[C_{\alpha} = \frac{1}{{r_{cut}}^{\alpha}} -\frac{A_{\alpha}}{3} (r_{cut} - r_{switch})^3 -\frac{B_{\alpha}}{4} (r_{cut} - r_{switch})^4\]Virial Calculation
Virial is basically the negative derivative of energy with respect to distance, multiplied by distance.
\[W_{\texttt{VDW}}(r_{ij}) = -\frac{dE_{\texttt{VDW}}(r_{ij})}{r_{ij}}\times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}} = F_{\texttt{VDW}}(r_{ij}) \times \frac{\overrightarrow{r_{ij}}}{{r_{ij}}}\]Using the
SWITCH
potential function defined forMARTINI
force field:\[F_{\texttt{VDW}}(r_{ij}) = C_{n_{ij}}\epsilon_{ij} \Bigg[ {\sigma_{ij}}^{n} \bigg(\frac{n}{{r_{ij}}^{(n+1)}} + \varphi_{F, n} (r_{ij}) \bigg) - {\sigma_{ij}}^{6} \bigg(\frac{6}{{r_{ij}}^{(6+1)}} + \varphi_{F, 6} (r_{ij}) \bigg) \Bigg]\]The constants defined in Eq. 14-16 and the factor \(\varphi_{F, \alpha}\) defined as:
\[\begin{split}\varphi_{F, \alpha}(r_{ij}) = \begin{cases} 0 & r_{ij} \leq r_{switch} \\ A_{\alpha} (r_{ij} - r_{switch})^2 + B_{\alpha} (r_{ij} - r_{switch})^3 & r_{switch} < r_{ij} < r_{cut} \\ 0 & r_{ij} \geq r_{cut} \end{cases}\end{split}\]Graph of Van der Waals potential with and without the application of the
SWITCH
function inMARTINI
force field. With theSWITCH
function active, the potential is smoothly reduced to 0.0 at theRcut
distance.